Math Field Day Short Course Event - Engineering Economy Symbols, Notation, Formulas, Key Terms

"Engineering economic analysis (often called engineering economy) is a group of techniques for the systematic analysis of alternative courses of action."

"To make a decision, alternatives must be resolved into <u>equivalent</u> sums so that they may be compared accurately."

	TERMS		
	Cash Flow (receipt of money up;		
disbursement of money down)			
	Time value of money		
777	Equivalence		
	Compound interest		
Contract Contract	Present worth		
1	Annual cost		
1	Rate of return		
	Nominal interest rate		
1	Effective interest rate		

Three major methods		
of		
Comparing alternatives		
Present worth		
Annual cost Rate of return		
		Benefit-Cost Ratio

Notation .			
Present Sum P			
Future Sum F			
End-of-period payments or receipts			
in a uniform series continuing for a			
specified number of periods A			
Number of interest periods n			
Interest rate per interest period i			
Nominal interest rate per year r			
Let interest be compounded <i>m</i> times per year at an			
interest rate of $i = \frac{r}{m}$ per compounding period, then:			
Nominal interest rate per annum = $m\left(\frac{r}{m}\right) = r$			
Effective interest rate per annum = $\left(1 + \frac{r}{m}\right)^m - 1$			
Number of interest periods, n , is:			
$n = m \times (number \ of \ years)$			

Formulas for Calculating Compound Interest Factors		
1. Single Payment – Compound Amount Factor $(F/P,i,n)$	(1+i)"	
2. Single Payment – Present Worth Factor $(P/F,i,n)$	$\frac{1}{(1+i)^n}$	
3. Sinking Fund Factor $(A/F,i,n)$	$\frac{i}{(1+i)''-1}$	
4. Capital Recovery Factor $(A/P,i,n)$	$\frac{i(1+i)^n}{(1+i)^n-1}$	
5. Uniform Series – Compound Amount Factor $(F/A,i,n)$	$\frac{(1+i)^n-1}{i}$	
6. Uniform Series – Present Worth Factor $(P/A, i, n)$	$\frac{(1+i)^n-1}{i(1+i)^n}$	